

A survey of neural network accelerator with software
development environments

Jin Song1, 2, 3, Xuemeng Wang3, 4, Zhipeng Zhao3, 4, Wei Li1, and Tian Zhi1, †

1SKL of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Cambricon Tech. Ltd, Beijing 100191, China
4University of Science and Technology of China, Hefei 230026, China

Abstract: Recent years, the deep learning algorithm has been widely deployed from cloud servers to terminal units. And re-
searchers proposed various neural network accelerators and software development environments. In this article, we have re-
viewed the representative neural network accelerators. As an entirety, the corresponding software stack must consider the hard-
ware architecture of the specific accelerator to enhance the end-to-end performance. And we summarize the programming en-
vironments of neural network accelerators and optimizations in software stack. Finally, we comment the future trend of neural
network accelerator and programming environments.

Key words: neural network accelerator; compiling optimization; programming environments

Citation: J Song, X M Wang, Z P Zhao, W Li, and T Zhi, A survey of neural network accelerator with software development
environments[J]. J. Semicond., 2020, 41(2), 021403. http://doi.org/10.1088/1674-4926/41/2/021403

1. Introduction

Recent years, artificial intelligence (AI) developed at an ex-
plosive speed. With the great progress made by the neural net-
work (NN) algorithms, the application scenarios also widely
spread, including image processing[1, 2], object detection[3, 4],
speech recognition[5, 6] and natural language processing[7, 8]

and many other fields. Furthermore, the dimensionality of
NNs goes deeper[9] and the amount of computations in-
creases exponentially, which brings severe challenge to tradi-
tional computing architectures. Therefore, different types of
NN accelerator have emerged continuously. This article aims
to review the development of NN accelerators and their pro-
gramming environments

Inspired by biological NNs, artificial NNs are proposed to
solve artificial intelligent problems. Initially, McCulloch and
Pitts proposed the concept, that a single neuron, the basic ele-
ment in NN, receives inputs, processes and generates out-
puts[10]. In 1958, Rosenblatt created the perceptron for pat-
tern recognition[11]. With the supervised learning policy, the
perceptron is proved to be convergent. After that, the back-
propagation algorithm and multilayer perceptron[12] are pro-
posed and push forward the development of the NN re-
search.

Recently, with the continuous decline of process nodes,
the deep learning[13] concept is proposed by Hinton in 2006.
Afterwards such hierarchy computing systems can perform a
fair accuracy in some AI tasks. Since AlexNet[14] achieved
15.3% top-5 error rate on ILSVRC-2012 database, more and
more deep learning methods began to show advantages in
computer vision fields.

However, a deeper NN model may not perform better
than a shallower model. Besides the increase of computation,
the gradient vanishment also affects the training effect. By ad-
justing the structure of NN model, the training effect, conver-
gence speed and model accuracy can be increased. He et al.
developed residual blocks[15]. The inception structure has im-
proved after several versions through engineering experi-
ence and experiment[16, 17].

And with the efforts of the researchers, there is not only
the structure of the NN model has improved, but the computa-
tion pattern of the NN layer also evolved. Yu and Koltun[18]

proposed dilated convolution to solve multi-scale recogni-
tion problems in test database. Mamalet and Garcia[19] intro-
duced various strategies to simplify filters that used as fea-
ture extractors learnt in CNNs, so as to modify the hypothes-
is space and speed up processing. Howard et al. presented an
effective NN model for mobile devices and embedded visual
applications, called MobileNets[20]. Its architecture is stream-
line-based which takes depth-wise separable convolutions to
construct lightweight deep neural network (DNN) model.
These fixed combination structures of NN models and optimiz-
ation of algorithm (Fig. 1), could also inspire the develop-
ment of NN accelerator systems, from bottom hardware to
above software.

In the network structure design, in addition to the sequen-
tial execution of the direct connection of the NN layer, there
are also ring topology. The recurrent neural network (RNN) is
a class of NN model with recurrent connections. And due to
the ring topology and internal state of the cyclic structure, it
has significance on processing and predicting sequential data
by overcoming many limitations of input and output data in
traditional NN algorithms.

But after many layers of RNNs, the gradient tends to van-
ish in most cases. Long-short time memory (LSTM) network is

Correspondence to: T Zhi, zhitian@ict.ac.cn
Received 23 OCTOBER 2019; Revised 18 DECEMBER 2019.

©2020 Chinese Institute of Electronics

REVIEWS

Journal of Semiconductors
(2020) 41, 021403

doi: 10.1088/1674-4926/41/2/021403

http://dx.doi.org/10.1088/1674-4926/41/2/021403

a widely used recurrent structure network architecture in prac-
tical applications, which was proposed by Hochreiter[21] to im-
prove the problems existing in the practical application of
RNN and realize the long-term preservation of information.
LSTM structure has three gates, input gate, forget gate and
output gate, to control state and output at different time.
LSTM combines short-term memory with long-term memory
through a gate structure to alleviate the problem of gradient
vanishment. Another popular variant of LSTM unit is a simpli-
fied structure called gated recurrent unit (GRU) proposed by
Cho et al.[22]. GRU only has two gates, namely update gate
and reset gate. It gets rid of cell state and uses hidden state
to transmit information. Vaswani et al. proposed a new
simple network architecture, the transformer, based solely on
self-attention mechanisms, dispensing with recurrence and
convolutions entirely[23].

In addition, transformer can increase to a very deep
depth, fully exploit the characteristics of DNN model, require
significantly less time to train, and improve the accuracy of
the model. In 2018, Devlin et al. proposed bidirectional en-
coder representations from transformer (BERT)[24]. BERT can
pretrain deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in
all layers, and the BERT can be fine-tuned with just one addi-
tional output layer to create state-of-the-art models for many
other tasks without modifying substantial task-specific architec-
ture. BERT outperforms previous methods because it is the
first unsupervised, deeply bidirectional system for pre-train-
ing in NLP. While its model size is too large that it is still a chal-
lenge in software platform to train from random value of
weight initialization.

From a functional point of view, the convolution layers

are usually placed at the front of the NN model to extract fea-
tures. The number of channels is increased by sliding the fil-
ters over the input data, doing multiplication and addition.
The pooling layer is usually following after convolution lay-
ers to reduce spatial dimension information, to avoid over-fit-
ting, and improve the fault tolerance of the NN model. By ex-
ploiting data reuse pattern and calculation order of the NN lay-
er in the network structure, a corresponding optimization
method can be designed in hardware accelerator or soft-
ware algorithm. And from a computation point of view, most
part of computation in a NN model is occupied by the multi-
plications and additions in convolution layers and in fully-con-
nected layers. Naturally, accelerating these types of layers is a
key point to reduce the execution time of the whole network.

From the above methods, in the past few decades, lots
of researchers have proposed many NN accelerator architec-
tures, and put efforts from algorithm to hardware. From al-
gorithm view, researchers use methods such as sparseness[25],
pruning[26], quantization bit width[27], matrix
decomposition[28], and entropy coding[29] to compress data
and reduce computation to accelerate NN computation. In
terms of hardware, researchers propose parallelization[30],
self-organizing feature maps[31] and other methods[32−34] to
design neural-network-specific accelerators, reduce execu-
tion time, and improve computational efficiency. Section 2 re-
views several existing NN accelerators and programmable hard-
ware design.

From a point of software view, programming system of
NN accelerators includes the programming method of NNs,
compilation and optimization. The design of the NN accelerat-
or software stack is a bridge between programmers and the
underlying hardware. Many deep learning frameworks have

Previous
layer

1 × 1
Convolution

1 × 1
Convolution

1 × 1
Convolution

1 × 1
 Convolution

1 × 1
Convolution

3 × 3
Convolution

3 × 3
Convolution

3 × 3
Convolution

3 × 3
Convolution

5 × 5
Convolution

3 × 3
 MaxPooling

3 × 3
 MaxPooling

Filter concat

Weight layer

Weight layer

ReLU
F (x)

H (x) = F (x) + x

X

Identity X

＋

ReLU

Previous
layer

Filter concat

Activation scaling

Inception

＋

ReLU activation

ReLU activation

(d)(b)

(c)(a)

Fig. 1. (Color online) Classical CNN model architectures. There are four fixed combination of layers in the figure. Among them, (a) stands for resid-
ual net in ResNet series networks, (b) expresses Inception-ResNet combination structure, (c) represents naïve inception structure, and (d) shows
an upgraded version of inception with dimension reduction feature.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403

J Song et al.: A survey of hardware and software architecture of neural network accelerator

put efforts to simplify the deployment of NN algorithms on
NN accelerators and maximize the performance end-to-end.
Some frameworks are versatile and some are designed for NN
accelerators. Section 3 reviews the detailed design of soft-
ware stack of NN accelerator.

Section 4 comments the challenges and future trends of
the development and implementation of the NN accelerator
whole programming system. At the end, we summarize in Sec-
tion 5.

2. Neural network accelerator and programmable
hardware design

2.1. Neural network accelerator

In 2012, Chen et al.[35] demonstrated that hardware NN ac-
celerators can have potential broad applications by develop-
ing and evaluating software NN implementations of several re-
cognition, mining, and synthesis (RMS) applications from the
PARSEC suite. As dark silicon age has already come, chips can
no longer rely on simply increasing the operational core
counts to improve performance without surpassing a reason-
able power budget. So, accelerators targeting an application
or an application domain seems quite promising. And the res-
ults show that a hardware NN accelerators are indeed compat-
ible with many of the emerging high-performance workloads.

Researchers have proposed diverse accelerator schemes
by utilizing the characteristics of the computing patterns in
NN algorithms.

Some accelerators propose lower-bit precision computa-
tion and sparse representation. In 2009, Farabet et al. pro-
posed an FPGA-based convolutional NN accelerator CNP[36]

that uses 18-bit vertex data to implement almost all convolu-
tional network operations. The implementation takes full ad-
vantage of multiple hardware multiply-accumulate units on
the FPGA. And a software compiler is also implemented to
take the description of trained CNN model and compile it in-
to a sequence of instructions. This CNP system can be used
for low-power and lightweight embedded vision systems. In
2016, Zhang et al. proposed Cambricon-X[37], which exploits
the sparsity and irregularity of sparse NN models for effi-
ciency. According to the computing mode and memory ac-
cess characteristics of sparse NNs, Cambricon-X designs dedic-
ated neuron processing elements (PE) and indexing module
(IM) to select the neurons that need to be computed, and
then achieves high performance and energy efficient NN accel-
eration under the limited bandwidth requirements. In 2019, a
more recent study showed a new quantization method with
mixed data structure and bit-shifting broadcast accelerator
structure BSHIFT, which reduces the storage requirement of
NNs models from 32 to 5 bits without affecting their accur-
acy[38].

Some accelerators design pipeline structure for NN. In
2016, Shafiee et al. designed a pipelined architecture, define
new data encoding techniques and many supporting digital
components, exploring the balance between memristors,
ADCs, and eDRAMs[39]. In 2017, Chen et al. optimizes for the en-
ergy efficiency of the entire system. The accelerator chip and
off-chip DRAM, focus on the adaptive dataflow for various
CNN shapes by reconfiguring the architecture, which can min-
imize the on-chip data and memory[40]. Google released the
first tensor processor units (TPU) that has been used in the

Google data center for two years[41]. It uses a dedicated mat-
rix unit to perform matrix multiply and convolution, an activa-
tion unit to perform nonlinear functions and a program-
mable DMA controller to transfer data. TPU leverages advant-
age in MACs and on-chip memory. On specific TensorFlow
framework, it runs 15 times as fast as the K80 GPU, and 29
times in performance per Watt. In the same year, the second
version of TPU was introduced. The calculation of the
provided floating-point operations reaches 180 TFLOPS,
which is 30x and 15x higher than the conventional CPU and
GPU, respectively.

DNN models are computationally and memory intensive,
and their efficiency and scalability have been severely restric-
ted by the limited memory bandwidth. Near-data processing
is an effective way of addressing the above issue. Since 2014,
Chen et al. have proposed the DianNao series of ASIC deep
learning accelerators[42], which can accelerate machine learn-
ing algorithms including CNN and DNN. DianNao[43] acceler-
ates the inference process of deep learning with a special em-
phasis on the impact of memory in design, performance and
energy. It focuses on the optimization of memory reading,
and uses fragmentation technology and data locality. It is cap-
able of performing 452 GOPS in a small footprint of 3.02 mm2

and 485 mW. DaDianNao[44] is a machine learning supercom-
puter architecture proposed for the efficient processing of
large-scale NNs. It includes multiple identical chips connec-
ted with a mesh interconnection network. Each chip con-
tains 16 tiles and has a neural functional unit and 4 eDRAM
banks. By keep the whole model within the chips simultan-
eously, it can eliminate main memory accesses. In the visual re-
cognition scenario with CNNs at mobiles or embedded
devices, it has strict power and area limit. To improve the over-
all throughput of the accelerator, the proposed
ShiDianNao[45] store the whole CNN model within on-chip stor-
age. It is placed next to the image sensor and completely elim-
inates the system's off-chip memory access. PuDianNao[46] is
a polyvalent ASIC accelerator for ML scenarios at different
scales, supporting seven representative machine learning tech-
niques. In Ref. [47], Du et al. combined inexact computing
with NN accelerators and describe the benefits and associ-
ated costs expressed by increased error, proving that using in-
exact multipliers in NNs is feasible.

Some accelerators use reconfigurable architectures, consid-
ering programmability and flexibility. The concept of reconfig-
uration was first put forward by Professor Gerald Estrion in
his article in 1960[48]. He defined that a computer can be com-
posed of a main processor and a set of reconfigurable hard-
ware. And those hardware structures can be configurated by
the main processor to adapt to specific tasks. Thus, reconfigur-
able prototype systems are developed. In 1999, Dehon et al.
further defined the reconfigurable processor, the task-to-chip
spatial mapping can be customized and realized to a great ex-
tent after the chip was manufactured[49]. It was also a new
choice to apply the FPGAs to computing, combining the ad-
vantages of traditional software and hardware computing,
which called reconfigurable computing architecture. This archi-
tecture can program the hardware and reconstruct the cir-
cuit structure, so that the computation of the device can
meet the immediate requirements of a certain application,
and can be reused in different time domains. After that, as arti-
ficial NNs develop rapidly and the amount of information has

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403 3

J Song et al.: A survey of hardware and software architecture of neural network accelerator

increased dramatically, reconfigurable accelerators start to ap-
pear to solve a series of problems that follow.

In 2012, Cadambi et al. presented a massively parallel, en-
ergy efficient programmable accelerator that can execute mul-
tiple learning and classification algorithms[50]. And different
MapReduce accelerators can be reconfigured dynamically ac-
cording to the applications requirements. In 2017, Ansari et
al. proposed a reconfigurable accelerator that uses basic pro-
cessing elements as building blocks of its computational en-
gine and can be extended to be a network-agnostic architec-
ture that supports various networks[51]. In 2017, a versatile re-
configurable accelerator for binary/ternary DNNs was presen-
ted by Ando et al.[52]. It featured a massively parallel in-
memory processing architecture and stores varieties of bin-
ary/ternary DNNs with a maximum of 13 layers, 4.2 K neur-
ons, and 0.8 M synapses on chip, improving the energy effi-
ciency dramatically. Lee et al. proposed a unified DNN acceler-
ator in 2018, which is a unified neural processing unit support-
ing convolutional layers, recurrent layers and fully connected
layers with fully-variable weight bit-precision from 1 to 16
bits[53]. In 2019, You and Wu presented an input row based
sparse convolution neural network (CNN) accelerator on FP-
GAs and a weight merging method to balance the computa-
tion load on different PUs, which performs sparse CNN comput-
ing efficiently and maximize the overall computation effi-
ciency[54].

In the aspect of programmability of NN, there are more re-
search work. Liu et al. put forward a new instruction set archi-
tecture for NN accelerators, called Cambricon[55], which
achieved higher code density over vector and matrix instruc-
tions. Since the programming productivity and software stack
development, becomes an important reason instead of per-
formance and power efficiency that hinders the application
of machine learning computers. In 2019, Zhao et al. pro-
posed Cambricon-F[56], a series of homogeneous, sequential,
multi-layer, layer-similar, ML computers with the same ISA. A
Cambricon-F machine has a fractal von Neumann architec-
ture and its components are managed iteratively. Cambricon-
F instances with different scales can share the same software
stack on the common ISA, so that it can significantly im-
prove the programming productivity.

2.2. Accelerator hardware design summarization

Generally, NN accelerators have been implemented on
various hardware platforms, which can be mainly divided in-
to three categories.

The first is general purpose hardware platform, such as
GPU, CPU, DSP and other processors belong to this type.
They are based on Von Neumann structure that takes arithmet-
ic logic units (ALU) as its computing core in general, and fol-
low the workflow of fetching, decoding and executing instruc-
tions. Due to its versatility, the CPU needs to deal with vari-
ous application scenarios, which may include complex types
of branch jumps and interrupts. So that the control logic and
cache hit ratio are the key factors that affect instruction
throughput. Specialized optimization within a specific do-
main is an option. GPU tremendously reduces the space of con-
trol logic and cache, and adds a large number of single instruc-
tion multiple data (SIMD) computing unit, which greatly im-
proves the parallelism of processor computing, making it suit-
able for large-scale, similar-type and repetitive computing ap-

plications. But its power consumption is high. General Pur-
pose Processor with small buffer capacity and only support-
ing basic operations, and the complex arithmetic operations
are composed of a series of basic operations. Thus, frequent
data exchange between registers and memory, also between
on-chip cache and off-chip storage is required, which not
only reduces performance but also increases energy consump-
tion of NN. Researchers began to design special accelerators
for NN algorithms.

The second category is the application-specific integ-
rated circuit (ASIC). ASIC is a special processor designed for
specific applications, which has the advantages of small size,
low power consumption, fast calculation speed and high reliab-
ility. ASIC adopts hardware circuit paths for fixed type comput-
ing tasks, so ASIC can achieve very high energy-efficiency ra-
tios at very low power consumption generally (down to milli-
watts). Therefore, it is a good choice in the scenario where
the NN algorithm and application requirements are relatively
fixed. However, ASIC has low flexibility, and its fixed hard-
ware structure makes it lack of scalability. As long as the applic-
ation requirements change slightly or NN algorithm begins to
evolve, the whole hardware circuit needs to be redesigned. In
addition, ASIC requires a long development cycle and the
cost is high.

The third kind is based on reconfigurable devices, includ-
ing field-programmable gate array (FPGA) and coarse-grained
reconfigurable array (CGRA). FPGA can provide a large
amount of computing and storage resources for computing-in-
tensive applications (such as CNN, DNN, etc.). The program-
mable and reconfigurable features of this class of processors
allow users to customize the processor structure according to
their needs, and can complete the design evaluation in a very
short time, thus shortening the development cycle. Because
the FPGA sacrifices too much chip area and computing
speed, CGRA is proposed. CGRA integrates the computing
part into configurable processing elements (PE), and changes
the link between PE and memory by configuring information,
thereby realizing the dynamic configuration of the hardware
structure. Because CGRA solidifies the internal hardware cir-
cuitry of PE and reduces the additional cost of its intercon-
nect configuration, it can be closer to the ASIC in terms of en-
ergy efficiency, and the power consumption can be con-
trolled at the milliwatt level.

Combined with the analysis above, we can get the comp-
arison of different hardware acceleration platforms as Table 1
displays. In summary, the reconfigurable devices represented
by FPGA have achieved a compromise in flexibility and per-
formance between general hardware platform and ASIC.

3. Software design and optimization of NN
accelerator

This section mainly reviews the NN accelerator program-
ming environments. We summarize the methods to improve
NN programming performance, which are mainly based on
the characteristics of NN algorithms and the architectures of
NN accelerators.

3.1. Overview

In the NN accelerator design, it is not enough to con-
sider the hardware features of the memory access and paral-
lel of neural network computing, but also the entire program-
ming system. The computing performance and energy effi-

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403

J Song et al.: A survey of hardware and software architecture of neural network accelerator

ciency of the hardware platform is only the premise of speed-
ing up the neural network algorithm. The execution of neur-
al network application also needs the cooperation of the soft-
ware stack to enhance hardware efficiency. In actual applica-
tion scenarios, regardless of the cloud servers, the IP in the mo-
bile devices, or the cameras in embedded environment, the
use of the neural network accelerator in any scenario is insepar-
able from the programming system. The hardware-based op-
timization in the software stack, directly determines the over-
all system workload and performance of the application. On
the other hand, when the user deploys the application on the
NN accelerator (especially the accelerator in ASIC form), the
software stack and development environment must be adap-
ted to the particularity of the hardware architecture. So, the
design of the whole programming system directly determ-
ines the agility of front-end development, and influences the
friendliness of the testing and debugging process. The portabil-
ity of NN accelerator programming system is an important
factor of the application, which can transplant or deploy to
the target platform. Developers prefer not to re-debug or re-
fine-tuned the network after the transplantation. And with
the original NN model, the correctness and accuracy of the out-
put should not be affected at all. In the ideal situation, the pro-
gram after porting could fully utilize the acceleration perform-
ance of the accelerator.

The design of the programming system is mainly di-
vided into two parts, the NN programming and the NN mod-
el compilation and optimization. The programming method
of NN is the first level of interface that the programmer uses
to develop on the specific accelerator hardware. The struc-
tured description is directly proposed by user to describe the
NN model. The compilation of the network model is to trans-
late the different levels of representation of the NN model to
a series of machine code of the specific accelerator. Gener-
ally, the computational graph will be converted into as-
sembly instructions. Since different accelerators may use differ-
ent instruction set architectures (ISA), the compilation meth-
od is inexhaustible for different accelerators. So specialized op-
timizations can be made for the specific hardware architec-
tures to maximize the benefits of hardware.

3.2. Programming of neural network

The programming of NNs is one of the first issues to be
considered in NN model design. At present, the NN al-
gorithm is still developing rapidly, and the scale and complex-
ity of the NN model are increasing. All of these lead higher re-
quirements on NN programming. Currently there are two
methods of programming, one is using the NN frameworks
(Fig. 2) and the other one is directly implemented in high-
level programming language by programmers.

Use a neural network framework. There are many gener-
al neural network frameworks have been proposed, such as
TensorFlow[57], Caffe[58], MXNet[59], etc. These NN frameworks
simplify the representation of neural network. Some frame-
works are based on data representation, and some are based
on layer representation. By using the representation re-
gistered and encapsulated in the framework, the user can con-
veniently describe the NN model structure. Using the exist-
ing NN framework has a low learning cost and powerful port-
ability. But programmers only can use the layers and opera-
tions predefined in the framework, which reduces flexibility.

Use a high-level programming language. Using high-
level programming languages includes the general-purpose
programming languages such as C++, and the domain-specif-
ic languages (DSL). When describe the NN model with a com-
mon programming language, high-performance libraries
provided by NN accelerator developers could be helpful.
These libraries provide functions of NN algorithms implementa-
tion, such as layer-based convolution operations, data-based
matrix multiplication, etc. And the libraries directly optimize
the execution of operations and calculations of the specific
hardware, so that developers can get a better performance. Us-
ing NN accelerator libraries in NN programming or compiling,
can also reduce programming difficulty and reduce coupling
in software stack. Domain-specific languages including
Latte[60], Swift for TensorFlow, are dedicated for NN model de-
scription and NN inference and training process. For instance,
with the differential operators feature, it is easier to deal with
the NN training process. When using DSL, the optimization of
the computational graph is provided at the language level. Dif-
ferent NN accelerator developers may also develop accelerat-
or-specific programming languages that are closely tied to
the hardware's features to compile and optimize. The specif-
ic compiler is usually used as a back-end of the whole NN pro-
gramming to generate the machine code of the NN accelerat-
or.

3.3. Compilation and optimization of NN accelerator

The compilation and optimization of NN models are the
core of the NN accelerator programming system, and also the
bridge connecting the software application and the underly-
ing hardware. Compilation of the NN model is to generate
the instructions running on the NN accelerator based on the in-
put NN model description. During compiling, the code can
be optimized according to the characteristics of the model
structure, the memory access pattern, and the architecture of
the accelerator. Therefore, the software application can effi-
ciently utilize hardware resources to achieve better perform-
ance and less power consumption.

Compilation of the NN model. The input of the com-
piler of the neural network accelerator is the description of
the NN model, using the methods described in Section 3.2.
Generally, the abovementioned description of a NN model is
computational graph form. The compiler converts the compu-
tational graph into intermediate representations (IR) which
are convenient to optimize and code generation. There may
be several levels of the IR in the compiler, such as high-level in-
termediate representation and low-level intermediate repres-
entation, etc. The compiler will optimize the intermediate rep-
resentation at different levels and generate binary hardware
execution code. DLIR[61] is a tensor-based intermediate repres-

Table 1. Comparison of different hardware acceleration platforms.

Features GPU/CPU ASIC FPGA

Speed Slow Medium Fast
Chip area Big Small Medium
Parallelism Low High Medium
Cost Low High Medium
Power consumption High Low Low
Development cycle Short Long Short
Flexibility Medium Low High

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403 5

J Song et al.: A survey of hardware and software architecture of neural network accelerator

entation proposed by Lan. The built-in tensor intrinsic of DLIR
can directly be mapped to hardware primitives, which
provide the ability to generate more efficient code for neural
network accelerators. It also comes with a compiler and
runtime. The compiler can convert the input computational
graph described using a framework to DLIR, and then take op-
timization and code generation. Du proposed Zhuque[62], a de-
velopment kit focusing on data layout for Cambricon-X[44]

which is a NN accelerator. It contains methods for the NN de-
scription, compiling and optimizing of network models, and
implementation of memory access operation and graph com-
puting. The software stack of Nvidia’s open source deep learn-
ing accelerator NVDLA also adopts this design idea. After the
compiler obtains the network model generated by the frame-
work such as Caffe, the software stack performs parsing and
optimization inside the compiler, and then generates files for
the backend. XLA[63] is a compiler for optimizing computation-
al graphs generated by Tensorflow. It can match different NN
accelerator backends such as CPU, GPU, ASIC accelerators,
etc. XLA inputs Tensorflow computational graphs, and then
converts them into internal custom intermediate representa-
tions HLO (high level optimizer). Code will be generated after
the HLO IR is optimized. But HLO IR describes the computation-
al graph in a high level and cannot represent the operations
such as data moving between main memory and on-chip
memory, so it cannot fully exploit hardware performance
when using neural network accelerators based on ASIC.
TVM[64] is a deep learning compiler framework proposed by
Chen et al. which proposes a unified intermediate representa-
tion. As a bridge between increasingly deep learning fron-
tends and hardware backends, TVM can parse computational
graphs of various frontend frameworks. It leverages Halide[65]

IR to present computation loops and provide several optimiza-
tion levels. After optimizing, the low-level loop program can
be used in various scenarios such as accelerator backend,
LLVM framework, CUDA, OpenCL, etc.

Computational graph optimization. The optimization
of computational graphs and code generation is a crucial
part to fully play the performance of NN accelerators. Optimi-
zation mainly includes the effective simplification of the net-
work structure represented by the computational graph, and
the optimization of data layout, data transfer, and computa-

tional parallelism in combination with hardware characterist-
ics. Previous compilation optimizations were mainly implemen-
ted by writing assemble instructions manually. Although this
method can achieve almost the best effect case-by-case, pro-
grammers need to put huge time and effort on it. As the com-
plexity of NN algorithms increases, the inefficiency of handwrit-
ten code cannot meet the demands. Therefore, the compila-
tion needs to perform optimization of operations automatic-
ally or semi-automatically. Most of the current neural net-
work compilers have built-in automatic optimizers. The acceler-
ator developers also propose various compiler optimizations
to meet the characteristics of the accelerators. Song[66] pro-
posed a series of optimization methods for NN accelerator, in-
cluding layer-based high-level optimization and low-level op-
timization within layers. The optimization performs intra lay-
er unrolling and pipelining to the computational graph, includ-
ing fine-grained and coarse-grained two levels. Layer integra-
tion based on computational graph, expanding pipelining
stages of layers are also mentioned. There are also some frame-
works that provide general optimization methods. XLA
provides two optimization levels (Fig. 3), target-independent
optimizations and target-dependent optimizations. Target-in-
dependent optimizations are mainly based on the structural in-
formation of the entire computational graph and no hard-
ware information is not involved. The optimization methods in-
clude algebraic simplification, constant folding, common
subexpression elimination, and layers fusion, etc. Target-de-
pendent optimizations are optimized using hardware architec-
ture information, which means that optimization methods
are different for different architectures. The TVM compiler
stack also provides multiple levels of optimization (Fig. 3).
The optimization in TVM is divided into three steps. The first
is the optimization of the computational graph. Operator fu-
sion in TVM combines multiple operators into one kernel.
Data layout will be optimized according to the structure of
the computational graph. The second is operator-level optimiz-
ation and code generation, including the optimization of
tensor expression and schedule space, nested parallelism
with cooperation, explicit memory latency hiding, etc. Finally,
TVM performs hardware-specific optimization using hard-
ware-aware optimization primitives, and get the optimized
low-level loop program for NN backends.

Neural network model

Neural network frameworks

High level intermediate representation

Low level intermediate representation

...
Neural

 network

 compile

 optimization

CPU

Binary hardware execution code

GPU

Accelerator

ASIC FPGA

General purpose processor

Fig. 2. (Color online) Programming system hierarchy diagram.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403

J Song et al.: A survey of hardware and software architecture of neural network accelerator

4. Future development trend

We have already reviewed some NN accelerator schemes
in this paper. Some of them are implemented on the general-
purpose chip platform, including supporting low-precision
computing, supporting more NN frameworks, and designing
for accelerated convolution operation. The implementation in-
cludes improved arithmetic storage structure, optimized data
flow and design specific NN instruction set architecture, data
level parallelism and data prefetching technology implemen-
ted on reconfigurable platforms. We also introduced the pro-
gramming system of NN accelerators. With the concerted ef-
forts of NN frameworks and compilers, developers can de-
ploy and debug their NN algorithms efficiently and conveni-
ently on accelerator hardware. While these designs have
made significant advances in NN acceleration, there are still
many challenges. In our view, the following five aspects are
feasible directions for future research of NN accelerators and
programming system.

(1) Optimizing computational performance. Applica-
tion of NN in embedded equipment is a future trend, In the as-
pect of arithmetic, we can reduce the number of parameters
and the amount of calculation of the neural network within
the allowable range of precision loss by pruning the network,
quantifying and low-precision calculation, so that the neural
network of smaller scale can be deployed to embedded
devices.

(2) Optimizing memory access performance. At pres-
ent, pruning, compression and other technologies have ap-
peared to optimize memory access performance, but the stor-
age speed cannot keep up with the calculation speed is still a
difficult problem in the current neural network accelerator
design.

(3) Optimizing power consumption and chip area. In ac-
celerator, multipliers are the units that consume most area
and power in computational units. Therefore, further explora-
tion of data organization forms can reduce the use of hard-
ware resources, reduce the power consumption of accelerat-
or, and reduce data exchange. Moreover, some effective tech-
niques such as approximate computing, pruning and compres-
sion can also improve performance and power consumption.

(4) Developing more versatile and modular program-
ming framework. It is evident that programming framework
plays an important role in the development of NN applica-
tions, which can help researchers develop conveniently and ef-

ficiently. In the future the programming framework should be
modular that the application developers will only focus on
neural network algorithms rather than the optimization meth-
od and hardware architecture. And different programming
frameworks should be compatible with each other to im-
prove programming efficiency.

(5) Hardware-oriented automatic optimization. The
compilation optimization is a crucial part to fully play the per-
formance of NN accelerators. Nowadays, the optimization for
hardware must be implemented by the hardware platform de-
velopers. In the future, there may be a general method to rep-
resent the characteristics of the hardware. With this method
the compiler will do hardware-oriented optimization automat-
ically, which will significantly alleviate the burden on hard-
ware developers.

With the development of NN algorithm, more NN operat-
ors need to be developed on the accelerator. In addition to op-
timizing the computation and memory access delay in hard-
ware, the friendliness of programming and the efficiency of
the library of NN accelerator should also be taken into ac-
count. So, the developers can spend less energy on the pro-
gramming on the specific accelerator details and iterate
faster. The automatic compile optimization of NN accelerator
is a research direction. And the whole programming system
may also consider of a heterogeneous computing platform
for the performance end-to-end.

5. Conclusion

Nowadays, the NN accelerator has not only gained extens-
ive attention in academic research, but has also been widely
deployed in industrial applications. But as the applications of
AI algorithms are becoming ubiquitous, the NN algorithm is
also evolving. The variability of application scenarios, the di-
versity of algorithms and the huge amount of data put for-
ward higher requirements for NN accelerators and their pro-
gramming systems.

We sketch out the NN algorithms and NN accelerators.
With the accelerator performance getting faster, hardware is
no longer the bottleneck in the AI application. Meanwhile, im-
plementing these algorithms on different software and hard-
ware platforms and implementing them efficiently is still a
huge challenge. It leads to the necessity and importance of ac-
celeration as a whole entity. Then we review the latest develop-
ment of from software aspects, including the implementa-
tion methods and compile optimization of the existing pro-
gramming system for NN accelerators. We also comment the
future development trend of NN accelerator, which direction
must be the combination of software and hardware iteration,
stimulating development.

Acknowledgments

This work is partially supported by the National Key Re-
search and Development Program of China (under Grant
2017YFB1003101, 2018AAA0103300, 2017YFA0700900,
2017YFA0700902, 2017YFA0700901), the National Natural Sci-
ence Foundation of China (under Grant 61732007, 61432016,
61532016, 61672491, 61602441, 61602446, 61732002,
61702478, and 61732020), Beijing Natural Science Founda-
tion (JQ18013), National Science and Technology Major
Project (2018ZX01031102), the Transformation and Transfer

NN frameworks

Computational graph level
optimization

Operator level optimization

Hardware-specific optimization

Optimized low-level loop program

(a) (b)
XLA HLO

Target-independent
 optimizations & analyses

XLA backend

Target-dependent
 optimizations & analyses

Target-specific
code generation

NN backends

Fig. 3. (Color online) (a) TVM and (b) XLA compiling optimization stack
overview diagram.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403 7

J Song et al.: A survey of hardware and software architecture of neural network accelerator

of Scientific and Technological Achievements of Chinese
Academy of Sciences (KFJ-HGZX-013), Key Research Projects
in Frontier Science of Chinese Academy of Sciences (QYZDB-
SSW-JSC001), Strategic Priority Research Program of Chinese
Academy of Science (XDB32050200, XDC01020000), Standardiz-
ation Research Project of Chinese Academy of Sciences
(BZ201800001), Beijing Academy of Artificial Intelligence
(BAAI) and Beijing Nova Program of Science and Technology
(Z191100001119093).

References

Huang W, Jing Z. Multi-focus image fusion using pulse coupled
neural network. Pattern Recogn Lett, 2007, 28(9), 1123

[1]

Paik J K, Katsaggelos A K. Image restoration using a modified hop-
field network. IEEE Trans Image Process, 1992, 1(1), 49

[2]

Li X, Zhao L, Wei L, et al. DeepSaliency: multi-task deep neural net-
work model for salient object detection. IEEE Trans Image Pro-
cess, 2016, 25, 3919

[3]

Zhu Y, Urtasun R, Salakhutdinov R, et al. segDeepM: exploiting seg-
mentation and context in deep neural networks for object detec-
tion. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, 4703

[4]

Graves A, Mohamed A R, Hinton G. Speech recognition with deep
recurrent neural networks. 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, 6645

[5]

Abdelhamid O, Mohamed A, Jiang H, et al. Convolutional neural
networks for speech recognition. IEEE/ACM Trans Audio Speech
Language Process, 2014, 22(10), 1533

[6]

Collobert R, Weston J. A unified architecture for natural language
processing. International Conference on Machine Learning, 2008

[7]

Sarikaya R, Hinton G E, Deoras A. Application of deep belief net-
works for natural language understanding. IEEE/ACM Trans Au-
dio, Speech, Language Process, 2014, 22(4), 778

[8]

Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv: 1409.1556,
2014

[9]

McCulloch W S, Pitts W. A logical calculus of ideas immanent in
nervous activity. Bull Math Biophys, 1943, 5(4), 115

[10]

Rosenblatt F. The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. Psycholog Rev, 1958,
65(6), 386

[11]

Werbos P. Beyond regression: new tools for prediction and analys-
is in the behavioral sciences. Dissertation for the Doctoral De-
gree, Harvard University, 1974

[12]

Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep
belief nets. Neur Comput, 2006, 18(7), 1527

[13]

Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with
deep convolu-tional neural networks. Advances in Neural Informa-
tion Processing Systems, 2012, 1097

[14]

He K, Zhang X, Ren S, et al. Deep residual learning for image recog-
nition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 770

[15]

Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2015, 1

[16]

Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-Res-
Net and the impact of residual connections on learning. National
Conference on Artificial Intelligence, 2016, 4278

[17]

Yu F, Koltun V. Multi-scale context aggregation by dilated convolu-
tions. arXiv: 1511.07122, 2015

[18]

Mamalet F, Garcia C. Simplifying convnets for fast learning. interna-
tional conference on artificial neural networks. International Con-
ference on Artificial Neural Networks, 2012, 58

[19]

Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolu-[20]

tional neural networks for mobile vision applications. arXiv:
1704.04861, 2017
Cho K, Van Merrienboer B, Gulcehre C, et al. Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv: 1406.1078, 2014

[21]

Hochreiter S, Schmidhuber J. Long short-term memory. Neur Com-
put, 1997, 9(8), 1735

[22]

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Ad-
vances in Neural Information Processing Systems, 2017, 5998

[23]

Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arX-
iv: 1810.04805, 2018

[24]

Parashar A, Rhu M, Mukkara A, et al. SCNN: An accelerator for com-
pressed-sparse convolutional neural networks. 2017 ACM/IEEE
44th Annual International Symposium on Computer Architec-
ture (ISCA), 2017

[25]

Han S, Mao H, Dally W J. Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv: 1510.00149, 2015

[26]

Lin D D, Talathi S S, Annapureddy V S. Fixed point quantization of
deep convolutional networks. International Conference on Ma-
chine Learning, 2016, 2849

[27]

Xue J, Li J, Yu D, et al. Singular value decomposition based low-
footprint speaker adaptation and personalization for deep neur-
al network. IEEE International Conference on Acoustics, 2014

[28]

Park E, Ahn J, Yoo S. Weighted-entropy-based quantization for
deep neural networks. IEEE Conference on Computer Vision & Pat-
tern Recognition, 2017

[29]

Song L, Wang Y, Han Y, et al. C-Brain: A deep learning accelerator
that tames the diversity of CNNs through adaptive data-level paral-
lelization. Design Automation Conference, 2016

[30]

Kuo R J, An Y L, Wang H S, et al. Integration of self-organizing fea-
ture maps neural network and genetic K-means algorithm for mar-
ket segmentation. Expert Syst Appl, 2006, 30(2), 313

[31]

Roska T, Bártfai G, Szolgay P, et al. A digital multiprocessor hard-
ware accelerator board for cellular neural networks: CNN-HAC. Int
J Circuit Theory Appl, 1992, 20(5), 589

[32]

Gokhale V, Zaidy A, Chang A X M, et al. Snowflake: a model agnost-
ic accelerator for deep convolutional neural networks. arXiv pre-
print arXiv: 1708.02579, 2017

[33]

Page A, Jafari A, Shea C, et al. SPARCNet: a hardware accelerator
for efficient deployment of sparse convolutional networks. ACM J
Emerg Technolog Comput Syst, 2017, 13(3), 1

[34]

Chen T, Chen Y, Duranton M, et al. BenchNN: On the broad poten-
tial application scope of hardware neural network accelerators.
2012 IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2012, 36

[35]

Farabet C, Poulet C, Han J Y, et al. CNP: An FPGA-based processor
for convolutional networks. International Conference on Field Pro-
grammable Logic and Applications, 2009

[36]

Zhang S, Du Z, Zhang L, et al. Cambricon-X: An accelerator for
sparse neural networks. The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, 2016, 20

[37]

Yu Y, Zhi T, Zhou X, et al. BSHIFT: a low cost deep neural net-
works accelerator. Int J Paral Program, 2019, 47, 360

[38]

Shafiee A, Nag A, Muralimanohar N, et al. ISAAC: a convolutional
neural network accelerator with in-situ analog arithmetic in cross-
bars. 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016

[39]

Chen Y H, Krishna T, Emer J S, et al. Eyeriss: an energy-efficient re-
configurable accelerator for deep convolutional neural networks.
IEEE J Solid-State Circuits, 2017, 52(1), 127

[40]

Jouppi N P, Young C, Patil N, et al. In-datacenter performance ana-
lysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2017, 1

[41]

Chen Y, Chen T, Xu Z, et al. DianNao family: energy-efficient hard-[42]

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403

J Song et al.: A survey of hardware and software architecture of neural network accelerator

http://dx.doi.org/10.1016/j.patrec.2007.01.013
http://dx.doi.org/10.1109/83.128030
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.eswa.2005.07.036
http://dx.doi.org/10.1002/cta.4490200512
http://dx.doi.org/10.1002/cta.4490200512
http://dx.doi.org/10.1007/s10766-018-00624-9
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1016/j.patrec.2007.01.013
http://dx.doi.org/10.1109/83.128030
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.eswa.2005.07.036
http://dx.doi.org/10.1002/cta.4490200512
http://dx.doi.org/10.1002/cta.4490200512
http://dx.doi.org/10.1007/s10766-018-00624-9
http://dx.doi.org/10.1109/JSSC.2016.2616357

ware accelerators for machine learning. Commun ACM, 2016,
59(11), 105
Chen T, Du Z, Sun N, et al. DianNao: a small-footprint high-through-
put accelerator for ubiquitous machine-learning. Proceedings of
the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014

[43]

Chen Y, Luo T, Liu S, et al. Dadiannao: A machine-learning super-
computer. Proceedings of the 47th Annual IEEE/ACM Internation-
al Symposium on Microarchitecture, 2014, 609

[44]

Du Z, Fasthuber R, Chen T, et al. ShiDianNao:shifting vision pro-
cessing closer to the sensor. ACM/IEEE International Symposium
on Computer Architecture, 2015

[45]

Liu D, Chen T, Liu S, et al. Pudiannao: A polyvalent machine learn-
ing accelerator. ACM SIGARCH Comput Architect News, 2015,
43(1), 369

[46]

Du Z, Palem K, Lingamneni A, et al. Leveraging the error resili-
ence of machine-learning applications for designing highly en-
ergy efficient accelerators. 2014 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2014, 201

[47]

Estrin G. Organization of computer systems: the fixed plus vari-
able structure computer. Western Joint IRE-AIEE-ACM Computer
Conference, 1960, 33

[48]

Dehon A, Wawrzynek J. Reconfigurable computing: what, why,
and implications for design automation. Proceedings 1999
Design Automation Conferenc, 1999

[49]

Majumdar A, Cadambi S, Becchi M, et al. A massively parallel, en-
ergy efficient programmable accelerator for learning and classifica-
tion. ACM Trans Architect Code Optim, 2012, 9(1), 1

[50]

Ansari A, Gunnam K, Ogunfunmi T, et al. An efficient reconfi-
gurable hardware accelerator for convolutional neural networks.
2017 51st Asilomar Conference on Signals, Systems, and Com-
puters, 2017, 1337

[51]

Ando K, Ueyoshi K, Orimo K, et al. BRein memory: a single-chip bin-
ary/ternary reconfigurable in-memory deep neural network accel-
erator achieving 1.4 TOPS at 0.6 W. IEEE J Solid-State Circuits,
2017, 53(4), 983

[52]

Lee J, Kim C, Kang S H, et al. UNPU: A 50.6TOPS/W unified deep
neural network accelerator with 1b-to-16b fully-variable weight
bit-precision. International Solid-State Circuits Conference, 2018,
218

[53]

You W, Wu C. A reconfigurable accelerator for sparse convolu-
tional neural networks. Proceedings of the 2019 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, 2019,
119

[54]

Liu S, Du Z, Tao J, et al. Cambricon: An instruction set architec-
ture for neural networks. ACM SIGARCH Comput Architect News,
2016, 44(3), 393

[55]

Zhao Y, Du Z, Guo Q, et al. Cambricon-F: machine learning com-
puters with fractal von neumann architecture. International Sym-
posium on Computer Architecture, 2019, 788

[56]

Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-
scale machine learning. 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), 2016, 265

[57]

Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architec-
ture for fast feature embedding. Proceedings of the 22nd ACM In-
ternational Conference on Multimedia, 2014, 675

[58]

Chen T, Li M, Li Y, et al. MXNet: a flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv:
1512.01274, 2015

[59]

Truong L, Barik R, Totoni E, et al. Latte: a language, compiler, and
runtime for elegant and efficient deep neural networks. ACM SIG-
PLAN Notices, 2016, 51, 209

[60]

Lan H, Du Z. DLIR: an intermediate representation for deep learn-
ing processors. IFIP International Conference on Network and Par-
allel Computing, 2018, 169

[61]

Du W, Wu L, Chen X, et al. ZhuQue: a neural network program-
ming model based on labeled data layout. International Symposi-
um on Advanced Parallel Processing Technologies, 2019, 27

[62]

Fischer K, Saba E. Automatic full compilation of Julia programs
and ML models to cloud TPUs. arXiv: 1810.09868, 2018

[63]

Chen T, Moreau T, Jiang Z, et al. TVM: an automated end-to-end op-
timizing compiler for deep learning. 13th USENIX Symposium on
Operating Systems Design and Implementation, 2018, 578

[64]

Mendis C, Bosboom J, Wu K, et al. Helium: lifting high-perform-
ance stencil kernels from stripped ×86 binaries to halide DSL
code. Program Language Des Implem, 2015, 50(6), 391

[65]

Song J, Zhuang Y, Chen X, et al. Compiling optimization for neur-
al network accelerators. International Symposium on Advanced
Parallel Processing Technologies, 2019, 15

[66]

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021403 9

J Song et al.: A survey of hardware and software architecture of neural network accelerator

http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2996864
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1145/2786763.2694358
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1145/3007787.3001179

