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Abstract: Recent  years,  the  deep  learning  algorithm  has  been  widely  deployed  from  cloud  servers  to  terminal  units.  And  re-
searchers  proposed  various  neural  network  accelerators  and  software  development  environments.  In  this  article,  we  have  re-
viewed the representative neural network accelerators. As an entirety, the corresponding software stack must consider the hard-
ware architecture of the specific accelerator to enhance the end-to-end performance. And we summarize the programming en-
vironments of neural network accelerators and optimizations in software stack.  Finally,  we comment the future trend of neural
network accelerator and programming environments.
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1.  Introduction

Recent years, artificial intelligence (AI) developed at an ex-
plosive speed. With the great progress made by the neural net-
work  (NN)  algorithms,  the  application  scenarios  also  widely
spread,  including  image  processing[1, 2],  object  detection[3, 4],
speech  recognition[5, 6] and  natural  language  processing[7, 8]

and  many  other  fields.  Furthermore,  the  dimensionality  of
NNs  goes  deeper[9] and  the  amount  of  computations  in-
creases exponentially,  which brings severe challenge to tradi-
tional  computing  architectures.  Therefore,  different  types  of
NN  accelerator  have  emerged  continuously.  This  article  aims
to  review  the  development  of  NN  accelerators  and  their  pro-
gramming environments

Inspired  by  biological  NNs,  artificial  NNs  are  proposed  to
solve  artificial  intelligent  problems.  Initially,  McCulloch  and
Pitts proposed the concept, that a single neuron, the basic ele-
ment  in  NN,  receives  inputs,  processes  and  generates  out-
puts[10].  In  1958,  Rosenblatt   created  the  perceptron  for  pat-
tern  recognition[11].  With  the  supervised  learning  policy,  the
perceptron  is  proved  to  be  convergent.  After  that,  the  back-
propagation  algorithm  and  multilayer  perceptron[12] are  pro-
posed  and  push  forward  the  development  of  the  NN  re-
search.

Recently,  with  the  continuous  decline  of  process  nodes,
the  deep  learning[13] concept  is  proposed  by  Hinton  in  2006.
Afterwards  such  hierarchy  computing  systems  can  perform  a
fair  accuracy  in  some  AI  tasks.  Since  AlexNet[14] achieved
15.3%  top-5  error  rate  on  ILSVRC-2012  database,  more  and
more  deep  learning  methods  began  to  show  advantages  in
computer vision fields.

However,  a  deeper  NN  model  may  not  perform  better
than a shallower model. Besides the increase of computation,
the gradient vanishment also affects the training effect. By ad-
justing the structure of NN model, the training effect, conver-
gence  speed  and  model  accuracy  can  be  increased.  He et  al.
developed residual  blocks[15].  The inception structure  has  im-
proved  after  several  versions  through  engineering  experi-
ence and experiment[16, 17].

And  with  the  efforts  of  the  researchers,  there  is  not  only
the structure of the NN model has improved, but the computa-
tion  pattern   of  the  NN  layer  also  evolved.  Yu  and  Koltun[18]

proposed  dilated  convolution  to  solve  multi-scale  recogni-
tion  problems  in  test  database.  Mamalet  and  Garcia[19] intro-
duced  various  strategies  to  simplify  filters  that  used  as  fea-
ture  extractors  learnt  in  CNNs,  so  as  to  modify  the  hypothes-
is space and speed up processing. Howard et al. presented an
effective  NN  model  for  mobile  devices  and  embedded  visual
applications,  called  MobileNets[20].  Its  architecture  is  stream-
line-based which  takes  depth-wise  separable  convolutions  to
construct  lightweight  deep  neural  network  (DNN)  model.
These fixed combination structures of NN models and optimiz-
ation  of  algorithm  (Fig.  1),  could  also  inspire  the  develop-
ment  of  NN  accelerator  systems,  from  bottom  hardware  to
above software.

In the network structure design, in addition to the sequen-
tial  execution  of  the  direct  connection  of  the  NN  layer,  there
are also ring topology.  The recurrent  neural network (RNN) is
a  class  of  NN  model  with  recurrent  connections.  And  due  to
the  ring  topology  and  internal  state  of  the  cyclic  structure,  it
has significance on processing and predicting sequential data
by overcoming many limitations of   input  and output data in
traditional NN algorithms.

But after many layers of RNNs, the gradient tends to van-
ish in most cases. Long-short time memory (LSTM) network is
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a widely used recurrent structure network architecture in prac-
tical applications, which was proposed by Hochreiter[21] to im-
prove  the  problems  existing  in  the  practical  application  of
RNN  and  realize  the  long-term  preservation  of  information.
LSTM  structure  has  three  gates,  input  gate,  forget  gate  and
output  gate,  to  control  state  and  output  at  different  time.
LSTM  combines  short-term  memory  with  long-term  memory
through a gate structure to alleviate the problem of  gradient
vanishment. Another popular variant of LSTM unit is a simpli-
fied  structure  called  gated  recurrent  unit  (GRU)  proposed  by
Cho et  al.[22].  GRU  only  has  two  gates,  namely  update  gate
and  reset  gate.  It  gets  rid  of  cell  state  and  uses  hidden  state
to  transmit  information.  Vaswani et  al. proposed  a  new
simple network architecture, the transformer, based solely on
self-attention  mechanisms,  dispensing  with  recurrence  and
convolutions entirely[23].

In  addition,  transformer  can  increase  to  a  very  deep
depth,  fully  exploit  the  characteristics  of  DNN  model,  require
significantly  less  time  to  train,  and  improve  the  accuracy  of
the  model.  In  2018,  Devlin et  al.  proposed  bidirectional  en-
coder  representations  from  transformer  (BERT)[24].  BERT  can
pretrain  deep  bidirectional  representations  from  unlabeled
text  by  jointly  conditioning  on  both  left  and  right  context  in
all  layers,  and the BERT can be fine-tuned with just  one addi-
tional output layer to create state-of-the-art models for many
other tasks without modifying substantial task-specific architec-
ture.  BERT  outperforms  previous  methods  because  it  is  the
first  unsupervised,  deeply  bidirectional  system  for  pre-train-
ing in NLP. While its model size is too large that it is still a chal-
lenge  in  software  platform  to  train  from  random  value  of
weight initialization.

From  a  functional  point  of  view,  the  convolution  layers

are usually placed at the front of the NN model to extract fea-
tures.  The  number  of  channels  is  increased  by  sliding  the  fil-
ters  over  the  input  data,  doing  multiplication  and  addition.
The  pooling  layer  is  usually  following  after  convolution  lay-
ers to reduce spatial dimension information, to avoid over-fit-
ting, and improve the fault tolerance of the NN model. By ex-
ploiting data reuse pattern and calculation order of the NN lay-
er  in  the  network  structure,  a  corresponding  optimization
method  can  be  designed  in  hardware  accelerator  or  soft-
ware algorithm. And from a computation point of view, most
part  of  computation in a  NN model  is  occupied by the multi-
plications and additions in convolution layers and in fully-con-
nected layers. Naturally, accelerating these types of layers is a
key point to reduce the execution time of the whole network.

From  the  above  methods,  in  the  past  few  decades,  lots
of  researchers  have  proposed  many  NN  accelerator  architec-
tures,  and  put  efforts  from  algorithm  to  hardware.  From  al-
gorithm view, researchers use methods such as sparseness[25],
pruning[26],  quantization  bit  width[27],  matrix
decomposition[28],  and  entropy  coding[29] to  compress  data
and  reduce  computation  to  accelerate  NN  computation.  In
terms  of  hardware,  researchers  propose  parallelization[30],
self-organizing  feature  maps[31] and  other  methods[32−34] to
design  neural-network-specific  accelerators,  reduce  execu-
tion time, and improve computational efficiency. Section 2 re-
views several existing NN accelerators and programmable hard-
ware design.

From  a  point  of  software  view,  programming  system  of
NN  accelerators  includes  the  programming  method  of  NNs,
compilation and optimization. The design of the NN accelerat-
or  software  stack  is  a  bridge  between  programmers  and  the
underlying  hardware.  Many  deep  learning  frameworks  have
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Fig. 1. (Color online) Classical CNN model architectures. There are four fixed combination of layers in the figure. Among them, (a) stands for resid-
ual net in ResNet series networks, (b) expresses Inception-ResNet combination structure, (c) represents naïve inception structure, and (d) shows
an upgraded version of inception with dimension reduction feature.
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put  efforts  to  simplify the  deployment  of  NN  algorithms  on
NN  accelerators  and  maximize  the  performance  end-to-end.
Some frameworks are versatile and some are designed for NN
accelerators.  Section  3  reviews  the  detailed  design  of  soft-
ware stack of NN accelerator.

Section  4  comments  the  challenges  and  future  trends  of
the  development  and  implementation  of  the  NN  accelerator
whole programming system. At the end, we summarize  in Sec-
tion 5.

2.  Neural network accelerator and programmable
hardware design

2.1.  Neural network accelerator

In 2012, Chen et al.[35] demonstrated that hardware NN ac-
celerators  can  have  potential  broad  applications  by  develop-
ing and evaluating software NN implementations of several re-
cognition,  mining,  and  synthesis  (RMS)  applications  from  the
PARSEC suite. As dark silicon age has already come, chips can
no  longer  rely  on  simply  increasing  the  operational  core
counts to improve performance without surpassing a reason-
able  power  budget.  So,  accelerators  targeting  an  application
or an application domain seems quite promising. And the res-
ults show that a hardware NN accelerators are indeed compat-
ible with many of the emerging high-performance workloads.

Researchers  have  proposed  diverse  accelerator  schemes
by  utilizing  the  characteristics  of  the  computing  patterns  in
NN algorithms.

Some  accelerators  propose  lower-bit  precision  computa-
tion  and  sparse  representation.  In  2009,  Farabet et  al.  pro-
posed  an  FPGA-based  convolutional  NN  accelerator  CNP[36]

that uses 18-bit vertex data to implement almost all  convolu-
tional  network  operations.  The  implementation  takes  full  ad-
vantage  of  multiple  hardware  multiply-accumulate  units  on
the  FPGA.  And  a  software  compiler  is  also  implemented  to
take the description of  trained CNN model  and compile  it  in-
to  a  sequence  of  instructions.  This  CNP  system  can  be  used
for  low-power  and  lightweight  embedded  vision  systems.  In
2016,  Zhang et  al.  proposed  Cambricon-X[37],  which  exploits
the  sparsity  and  irregularity  of  sparse  NN  models  for  effi-
ciency.  According  to  the  computing  mode  and  memory  ac-
cess characteristics of sparse NNs, Cambricon-X designs dedic-
ated  neuron  processing  elements  (PE)  and  indexing  module
(IM)  to  select  the  neurons  that  need  to  be  computed,  and
then achieves high performance and energy efficient NN accel-
eration under the limited bandwidth requirements. In 2019, a
more  recent  study  showed  a  new  quantization  method  with
mixed  data  structure  and  bit-shifting  broadcast  accelerator
structure  BSHIFT,  which  reduces  the  storage  requirement  of
NNs  models  from  32  to  5  bits  without  affecting  their  accur-
acy[38].

Some  accelerators  design  pipeline  structure  for  NN.  In
2016,  Shafiee et  al.  designed  a  pipelined  architecture,  define
new  data  encoding  techniques  and  many  supporting  digital
components,  exploring  the  balance  between  memristors,
ADCs, and eDRAMs[39]. In 2017, Chen et al. optimizes for the en-
ergy efficiency of  the entire  system.  The accelerator  chip and
off-chip  DRAM,  focus  on  the  adaptive  dataflow  for  various
CNN shapes by reconfiguring the architecture, which can min-
imize  the  on-chip  data  and  memory[40].  Google  released  the
first  tensor  processor  units  (TPU)  that  has  been  used  in  the

Google  data  center  for  two years[41].  It  uses  a  dedicated mat-
rix unit to perform matrix multiply and convolution, an activa-
tion  unit  to  perform  nonlinear  functions  and  a  program-
mable DMA controller to transfer data. TPU leverages advant-
age  in  MACs  and  on-chip  memory.  On  specific  TensorFlow
framework,  it  runs  15  times  as  fast  as  the  K80  GPU,  and  29
times  in  performance  per  Watt.  In  the  same  year,  the  second
version  of  TPU  was  introduced.  The  calculation  of  the
provided  floating-point  operations  reaches  180  TFLOPS,
which  is  30x  and  15x  higher  than  the  conventional  CPU  and
GPU, respectively.

DNN models  are  computationally  and memory intensive,
and their efficiency and scalability have been severely restric-
ted  by  the  limited  memory  bandwidth.  Near-data  processing
is an effective way of addressing the above issue. Since 2014,
Chen et  al.  have  proposed  the  DianNao  series  of  ASIC  deep
learning  accelerators[42],  which  can  accelerate  machine  learn-
ing  algorithms  including  CNN  and  DNN.  DianNao[43] acceler-
ates the inference process of deep learning with a special em-
phasis  on  the  impact  of  memory  in  design,  performance and
energy.  It  focuses  on  the  optimization  of  memory  reading,
and uses fragmentation technology and data locality. It is cap-
able of performing 452 GOPS in a small footprint of 3.02 mm2

and 485 mW. DaDianNao[44] is  a  machine learning supercom-
puter  architecture  proposed  for  the  efficient  processing  of
large-scale  NNs.  It  includes  multiple  identical  chips  connec-
ted  with  a  mesh  interconnection  network.  Each  chip  con-
tains  16  tiles  and  has  a  neural  functional  unit  and  4  eDRAM
banks.  By  keep  the  whole  model  within  the  chips  simultan-
eously, it can eliminate main memory accesses. In the visual re-
cognition  scenario  with  CNNs  at  mobiles  or  embedded
devices, it has strict power and area limit. To improve the over-
all  throughput  of  the  accelerator,  the  proposed
ShiDianNao[45] store the whole CNN model within on-chip stor-
age. It is placed next to the image sensor and completely elim-
inates  the  system's  off-chip  memory  access.  PuDianNao[46] is
a  polyvalent  ASIC  accelerator  for  ML  scenarios  at  different
scales, supporting seven representative machine learning tech-
niques.  In  Ref.  [47],  Du et  al.  combined  inexact  computing
with  NN  accelerators  and  describe  the  benefits  and  associ-
ated costs expressed by increased error, proving that using in-
exact multipliers in NNs is feasible.

Some accelerators use reconfigurable architectures, consid-
ering programmability and flexibility. The concept of reconfig-
uration  was  first  put  forward  by  Professor  Gerald  Estrion  in
his article in 1960[48]. He defined that a computer can be com-
posed  of  a  main  processor  and  a  set  of  reconfigurable  hard-
ware.  And  those  hardware  structures  can  be  configurated  by
the main processor to adapt to specific tasks. Thus, reconfigur-
able  prototype  systems  are  developed.  In  1999,  Dehon et  al.
further defined the reconfigurable processor,  the task-to-chip
spatial mapping can be customized and realized to a great ex-
tent  after  the  chip  was  manufactured[49].  It  was  also  a  new
choice  to  apply  the  FPGAs  to  computing,  combining  the  ad-
vantages  of  traditional  software  and  hardware  computing,
which called reconfigurable computing architecture. This archi-
tecture  can  program  the  hardware  and  reconstruct  the  cir-
cuit  structure,  so  that  the  computation  of  the  device  can
meet  the  immediate  requirements  of  a  certain  application,
and can be reused in different time domains. After that, as arti-
ficial NNs develop rapidly and the amount of information has
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increased dramatically, reconfigurable accelerators start to ap-
pear to solve a series of problems that follow.

In 2012, Cadambi et al. presented a massively parallel, en-
ergy efficient programmable accelerator that can execute mul-
tiple  learning  and  classification  algorithms[50].  And  different
MapReduce accelerators  can be reconfigured dynamically  ac-
cording  to  the  applications  requirements.  In  2017,  Ansari et
al. proposed a reconfigurable accelerator that uses basic pro-
cessing  elements  as  building  blocks  of  its  computational  en-
gine and can be extended to be a network-agnostic architec-
ture that supports various networks[51].  In 2017, a versatile re-
configurable accelerator for  binary/ternary DNNs was presen-
ted  by  Ando et  al.[52].  It  featured  a  massively  parallel  in-
memory  processing  architecture  and  stores  varieties  of  bin-
ary/ternary  DNNs  with  a  maximum  of  13  layers,  4.2  K  neur-
ons,  and  0.8  M  synapses  on  chip,  improving  the  energy  effi-
ciency dramatically. Lee et al. proposed a unified DNN acceler-
ator in 2018, which is a unified neural processing unit support-
ing convolutional  layers,  recurrent  layers  and fully  connected
layers  with  fully-variable  weight  bit-precision  from  1  to  16
bits[53].  In  2019,  You  and  Wu  presented  an  input  row  based
sparse  convolution  neural  network  (CNN)  accelerator  on  FP-
GAs  and a  weight  merging method to  balance  the  computa-
tion load on different PUs, which performs sparse CNN comput-
ing  efficiently  and  maximize  the  overall  computation  effi-
ciency[54].

In the aspect of programmability of NN, there are more re-
search work. Liu et al. put forward a new instruction set archi-
tecture  for  NN  accelerators,  called  Cambricon[55],  which
achieved higher  code density  over  vector  and matrix  instruc-
tions. Since the programming productivity and software stack
development,  becomes  an  important  reason  instead  of  per-
formance  and  power  efficiency  that  hinders  the  application
of  machine  learning  computers.  In  2019,  Zhao et  al.  pro-
posed  Cambricon-F[56],  a  series  of  homogeneous,  sequential,
multi-layer,  layer-similar,  ML  computers  with  the  same  ISA.  A
Cambricon-F  machine  has  a  fractal  von  Neumann  architec-
ture and its components are managed iteratively. Cambricon-
F instances with different  scales  can share the same software
stack  on  the  common  ISA,  so  that  it  can  significantly  im-
prove the programming productivity.

2.2.  Accelerator hardware design summarization

Generally,  NN  accelerators  have  been  implemented  on
various  hardware  platforms,  which  can  be  mainly  divided  in-
to three categories.

The  first  is  general  purpose  hardware  platform,  such  as
GPU,  CPU,  DSP  and  other  processors  belong  to  this  type.
They are based on Von Neumann structure that takes arithmet-
ic  logic  units  (ALU)  as  its  computing  core  in  general,  and  fol-
low the workflow of fetching, decoding and executing instruc-
tions.  Due  to  its  versatility,  the  CPU  needs  to  deal  with  vari-
ous  application  scenarios,  which  may  include  complex  types
of branch jumps and interrupts.  So that the control  logic and
cache  hit  ratio  are  the  key  factors  that  affect  instruction
throughput.  Specialized  optimization  within  a  specific  do-
main is an option. GPU tremendously reduces the space of con-
trol logic and cache, and adds a large number of single instruc-
tion  multiple  data  (SIMD)  computing  unit,  which  greatly  im-
proves the parallelism of processor computing, making it suit-
able for large-scale, similar-type and repetitive computing ap-

plications.  But  its  power  consumption  is  high.  General  Pur-
pose  Processor  with  small  buffer  capacity  and  only  support-
ing  basic  operations,  and  the  complex  arithmetic  operations
are  composed  of  a  series  of  basic  operations.  Thus,  frequent
data exchange between registers  and memory,  also between
on-chip  cache  and  off-chip  storage  is  required,  which  not
only reduces performance but also increases energy consump-
tion  of  NN.  Researchers  began  to  design  special  accelerators
for NN algorithms.

The  second  category  is  the  application-specific  integ-
rated  circuit  (ASIC).  ASIC  is  a  special  processor  designed  for
specific  applications,  which  has  the  advantages  of  small  size,
low power consumption, fast calculation speed and high reliab-
ility. ASIC adopts hardware circuit paths for fixed type comput-
ing tasks,  so  ASIC  can achieve  very  high energy-efficiency  ra-
tios at very low power consumption generally (down to milli-
watts).  Therefore,  it  is  a  good  choice  in  the  scenario  where
the NN algorithm and application requirements  are  relatively
fixed.  However,  ASIC  has  low  flexibility,  and  its  fixed  hard-
ware structure makes it lack of scalability. As long as the applic-
ation requirements change slightly or NN algorithm begins to
evolve, the whole hardware circuit needs to be redesigned. In
addition,  ASIC  requires  a  long  development  cycle  and  the
cost is high.

The third kind is based on reconfigurable devices, includ-
ing field-programmable gate array (FPGA) and coarse-grained
reconfigurable  array  (CGRA).  FPGA  can  provide  a  large
amount of computing and storage resources for computing-in-
tensive  applications  (such  as  CNN,  DNN,  etc.).  The  program-
mable  and  reconfigurable  features  of  this  class  of  processors
allow users to customize the processor structure according to
their needs, and can complete the design evaluation in a very
short  time,  thus  shortening  the  development  cycle.  Because
the  FPGA  sacrifices  too  much  chip  area  and  computing
speed,  CGRA  is  proposed.  CGRA  integrates  the  computing
part into configurable processing elements (PE),  and changes
the link between PE and memory by configuring information,
thereby  realizing  the  dynamic  configuration  of  the  hardware
structure.  Because  CGRA  solidifies  the  internal  hardware  cir-
cuitry  of  PE  and  reduces  the  additional  cost  of  its  intercon-
nect configuration, it can be closer to the ASIC in terms of en-
ergy  efficiency,  and  the  power  consumption  can  be  con-
trolled at the milliwatt level.

Combined with the analysis above, we can get the comp-
arison of different hardware acceleration platforms as Table 1
displays.  In  summary,  the reconfigurable  devices  represented
by  FPGA  have  achieved  a  compromise  in  flexibility  and  per-
formance between general hardware platform and ASIC.

3.  Software design and optimization of NN
accelerator

This  section  mainly  reviews  the  NN  accelerator  program-
ming  environments.  We  summarize  the  methods  to  improve
NN  programming  performance,  which  are  mainly  based  on
the  characteristics  of  NN  algorithms  and  the  architectures  of
NN accelerators.

3.1.  Overview

In  the  NN  accelerator  design,  it  is  not  enough  to  con-
sider  the  hardware  features  of  the  memory  access  and paral-
lel of neural network computing, but also the entire program-
ming  system.  The  computing  performance  and  energy  effi-
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ciency of the hardware platform is only the premise of speed-
ing  up  the  neural  network  algorithm.  The  execution  of  neur-
al network application also needs the cooperation of the soft-
ware  stack  to  enhance  hardware  efficiency.  In  actual  applica-
tion scenarios, regardless of the cloud servers, the IP in the mo-
bile  devices,  or  the  cameras  in  embedded  environment,  the
use of the neural network accelerator in any scenario is insepar-
able from the programming system. The hardware-based op-
timization in the software stack, directly determines the over-
all  system  workload  and  performance  of  the  application.  On
the other hand, when the user deploys the application on the
NN  accelerator  (especially  the  accelerator  in  ASIC  form),  the
software stack and development environment must be adap-
ted  to  the  particularity  of  the  hardware  architecture.  So,  the
design  of  the  whole  programming  system  directly  determ-
ines  the agility  of  front-end development,  and influences  the
friendliness of the testing and debugging process. The portabil-
ity  of  NN  accelerator  programming  system  is  an  important
factor  of  the  application,  which  can  transplant  or  deploy  to
the target  platform.  Developers  prefer  not  to  re-debug or  re-
fine-tuned  the  network  after  the  transplantation.  And  with
the original NN model, the correctness and accuracy of the out-
put should not be affected at all. In the ideal situation, the pro-
gram after porting could fully utilize the acceleration perform-
ance of the accelerator.

The  design  of  the  programming  system  is  mainly  di-
vided into two parts,  the NN programming and the NN mod-
el  compilation  and  optimization.  The  programming  method
of  NN  is  the  first  level  of  interface  that  the  programmer  uses
to  develop  on  the  specific  accelerator  hardware.  The  struc-
tured description is directly proposed by user to describe the
NN model.  The compilation of the network model is  to trans-
late the different levels  of  representation of  the NN model  to
a  series  of  machine  code  of  the  specific  accelerator.  Gener-
ally,  the  computational  graph  will  be  converted  into  as-
sembly instructions. Since different accelerators may use differ-
ent  instruction  set  architectures  (ISA),  the  compilation  meth-
od is inexhaustible for different accelerators. So specialized op-
timizations  can  be  made  for  the  specific  hardware  architec-
tures to maximize the benefits of hardware.

3.2.  Programming of neural network

The  programming  of  NNs  is  one  of  the  first  issues  to  be
considered  in  NN  model  design.  At  present,  the  NN  al-
gorithm is still developing rapidly, and the scale and complex-
ity of the NN model are increasing. All of these lead higher re-
quirements  on  NN  programming.  Currently  there  are  two
methods  of  programming,  one  is  using  the  NN  frameworks
(Fig.  2)  and  the  other  one  is  directly  implemented  in  high-
level programming language by programmers.

Use a neural network framework. There are many gener-
al  neural  network  frameworks  have  been  proposed,  such  as
TensorFlow[57],  Caffe[58],  MXNet[59],  etc.  These  NN  frameworks
simplify  the  representation  of  neural  network.  Some  frame-
works are based on data representation,  and some are based
on  layer  representation.  By  using  the  representation  re-
gistered and encapsulated in the framework, the user can con-
veniently  describe  the  NN  model  structure.  Using  the  exist-
ing NN framework has a low learning cost and powerful port-
ability.  But  programmers  only  can  use  the  layers  and  opera-
tions predefined in the framework, which reduces flexibility.

Use  a  high-level  programming  language.  Using  high-
level  programming  languages  includes  the  general-purpose
programming languages such as C++, and the domain-specif-
ic languages (DSL). When describe the NN model with a com-
mon  programming  language,  high-performance  libraries
provided  by  NN  accelerator  developers  could  be  helpful.
These libraries provide functions of NN algorithms implementa-
tion,  such  as  layer-based  convolution  operations,  data-based
matrix  multiplication,  etc.  And  the  libraries  directly  optimize
the  execution  of  operations  and  calculations  of  the  specific
hardware, so that developers can get a better performance. Us-
ing NN accelerator libraries in NN programming or compiling,
can  also  reduce  programming  difficulty  and  reduce  coupling
in  software  stack.  Domain-specific  languages  including
Latte[60], Swift for TensorFlow, are dedicated for NN model de-
scription and NN inference and training process. For instance,
with the differential operators feature, it is easier to deal with
the NN training process. When using DSL, the optimization of
the computational graph is provided at the language level. Dif-
ferent NN accelerator developers may also develop accelerat-
or-specific  programming  languages  that  are  closely  tied  to
the  hardware's  features  to  compile  and  optimize.  The  specif-
ic compiler is usually used as a back-end of the whole NN pro-
gramming to generate the machine code of the NN accelerat-
or.

3.3.  Compilation and optimization of NN accelerator

The  compilation  and  optimization  of  NN  models  are  the
core of the NN accelerator programming system, and also the
bridge  connecting  the  software  application  and  the  underly-
ing  hardware.  Compilation  of  the  NN  model  is  to  generate
the instructions running on the NN accelerator based on the in-
put  NN  model  description.  During  compiling,  the  code  can
be  optimized  according  to  the  characteristics  of  the  model
structure, the memory access pattern, and the architecture of
the  accelerator.  Therefore,  the  software  application  can  effi-
ciently  utilize  hardware  resources  to  achieve  better  perform-
ance and less power consumption.

Compilation  of  the  NN  model. The  input  of  the  com-
piler  of  the  neural  network  accelerator  is  the  description  of
the  NN  model,  using  the  methods  described  in  Section  3.2.
Generally,  the  abovementioned  description  of  a  NN  model  is
computational graph form. The compiler converts the compu-
tational  graph  into  intermediate  representations  (IR)  which
are  convenient  to  optimize  and  code  generation.  There  may
be several levels of the IR in the compiler, such as high-level in-
termediate  representation and low-level  intermediate  repres-
entation, etc. The compiler will optimize the intermediate rep-
resentation  at  different  levels  and  generate  binary  hardware
execution code. DLIR[61] is a tensor-based intermediate repres-

Table 1.   Comparison of different hardware acceleration platforms.

Features GPU/CPU ASIC FPGA

Speed Slow Medium Fast
Chip area Big Small Medium
Parallelism Low High Medium
Cost Low High Medium
Power consumption High Low Low
Development cycle Short Long Short
Flexibility Medium Low High
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entation proposed by Lan. The built-in tensor intrinsic of DLIR
can  directly  be  mapped  to  hardware  primitives,  which
provide the ability  to generate more efficient  code for  neural
network  accelerators.  It  also  comes  with  a  compiler  and
runtime.  The  compiler  can  convert  the  input  computational
graph described using a framework to DLIR, and then take op-
timization and code generation. Du proposed Zhuque[62], a de-
velopment  kit  focusing  on  data  layout  for  Cambricon-X[44]

which is a NN accelerator. It contains methods for the NN de-
scription,  compiling  and  optimizing  of  network  models,  and
implementation of memory access operation and graph com-
puting. The software stack of Nvidia’s open source deep learn-
ing accelerator  NVDLA also adopts  this  design idea.  After  the
compiler obtains the network model generated by the frame-
work  such  as  Caffe,  the  software  stack  performs  parsing  and
optimization inside the compiler,  and then generates files for
the backend. XLA[63] is a compiler for optimizing computation-
al graphs generated by Tensorflow. It can match different NN
accelerator  backends  such  as  CPU,  GPU,  ASIC  accelerators,
etc.  XLA  inputs  Tensorflow  computational  graphs,  and  then
converts  them  into  internal  custom  intermediate  representa-
tions HLO (high level optimizer). Code will be generated after
the HLO IR is optimized. But HLO IR describes the computation-
al  graph  in  a  high  level  and  cannot  represent  the  operations
such  as  data  moving  between  main  memory  and  on-chip
memory,  so  it  cannot  fully  exploit  hardware  performance
when  using  neural  network  accelerators  based  on  ASIC.
TVM[64] is  a  deep  learning  compiler  framework  proposed  by
Chen et al. which proposes a unified intermediate representa-
tion.  As  a  bridge  between  increasingly  deep  learning  fron-
tends and hardware backends,  TVM can parse computational
graphs of  various frontend frameworks.  It  leverages Halide[65]

IR to present computation loops and provide several optimiza-
tion  levels.  After  optimizing,  the  low-level  loop  program  can
be  used  in  various  scenarios  such  as  accelerator  backend,
LLVM framework, CUDA, OpenCL, etc.

Computational  graph  optimization. The  optimization
of  computational  graphs  and  code  generation  is  a  crucial
part to fully play the performance of NN accelerators. Optimi-
zation  mainly  includes  the  effective  simplification  of  the  net-
work  structure  represented  by  the  computational  graph,  and
the  optimization  of  data  layout,  data  transfer,  and  computa-

tional  parallelism  in  combination  with  hardware  characterist-
ics. Previous compilation optimizations were mainly implemen-
ted  by  writing  assemble  instructions  manually.  Although  this
method can achieve almost the best effect case-by-case,  pro-
grammers need to put huge time and effort on it. As the com-
plexity of NN algorithms increases, the inefficiency of handwrit-
ten  code  cannot  meet  the  demands.  Therefore,  the  compila-
tion  needs  to  perform  optimization  of  operations  automatic-
ally  or  semi-automatically.  Most  of  the  current  neural  net-
work compilers have built-in automatic optimizers. The acceler-
ator  developers  also  propose  various  compiler  optimizations
to  meet  the  characteristics  of  the  accelerators.  Song[66] pro-
posed a series of optimization methods for NN accelerator, in-
cluding layer-based high-level optimization and low-level op-
timization  within  layers.  The  optimization  performs  intra  lay-
er unrolling and pipelining to the computational graph, includ-
ing fine-grained and coarse-grained two levels.  Layer integra-
tion  based  on  computational  graph,  expanding  pipelining
stages of layers are also mentioned. There are also some frame-
works  that  provide  general  optimization  methods.  XLA
provides  two  optimization  levels  (Fig.  3),  target-independent
optimizations and target-dependent optimizations.  Target-in-
dependent optimizations are mainly based on the structural in-
formation  of  the  entire  computational  graph  and  no  hard-
ware information is not involved. The optimization methods in-
clude  algebraic  simplification,  constant  folding,  common
subexpression  elimination,  and  layers  fusion,  etc.  Target-de-
pendent optimizations are optimized using hardware architec-
ture  information,  which  means  that  optimization  methods
are  different  for  different  architectures.  The  TVM  compiler
stack  also  provides  multiple  levels  of  optimization  (Fig.  3).
The  optimization  in  TVM  is  divided  into  three  steps.  The  first
is  the  optimization  of  the  computational  graph.  Operator  fu-
sion  in  TVM  combines  multiple  operators  into  one  kernel.
Data  layout  will  be  optimized  according  to  the  structure  of
the computational graph. The second is operator-level optimiz-
ation  and  code  generation,  including  the  optimization  of
tensor  expression  and  schedule  space,  nested  parallelism
with cooperation, explicit memory latency hiding, etc. Finally,
TVM  performs  hardware-specific  optimization  using  hard-
ware-aware  optimization  primitives,  and  get  the  optimized
low-level loop program for NN backends.
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Fig. 2. (Color online) Programming system hierarchy diagram.
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4.  Future development trend

We have already reviewed some NN accelerator schemes
in this paper. Some of them are implemented on the general-
purpose  chip  platform,  including  supporting  low-precision
computing,  supporting  more  NN  frameworks,  and  designing
for accelerated convolution operation. The implementation in-
cludes improved arithmetic storage structure,  optimized data
flow and design specific  NN instruction set  architecture,  data
level  parallelism and data  prefetching technology implemen-
ted on reconfigurable platforms.  We also introduced the pro-
gramming  system  of  NN  accelerators.  With  the  concerted  ef-
forts  of  NN  frameworks  and  compilers,  developers  can  de-
ploy  and  debug  their  NN  algorithms  efficiently  and  conveni-
ently  on  accelerator  hardware.  While  these  designs  have
made  significant  advances  in  NN  acceleration,  there  are  still
many  challenges.  In  our  view,  the  following  five  aspects  are
feasible  directions  for  future  research  of  NN  accelerators  and
programming system.

(1) Optimizing  computational  performance. Applica-
tion of NN in embedded equipment is a future trend, In the as-
pect  of  arithmetic,  we  can  reduce  the  number  of  parameters
and  the  amount  of  calculation  of  the  neural  network  within
the allowable range of precision loss by pruning the network,
quantifying  and  low-precision  calculation,  so  that  the  neural
network  of  smaller  scale  can  be  deployed  to  embedded
devices.

(2) Optimizing  memory  access  performance. At  pres-
ent,  pruning,  compression  and  other  technologies  have  ap-
peared to optimize memory access performance, but the stor-
age speed cannot keep up with the calculation speed is still a
difficult  problem  in  the  current  neural  network  accelerator
design.

(3) Optimizing power consumption and chip area. In ac-
celerator,  multipliers  are  the  units  that  consume  most  area
and power in computational units. Therefore, further explora-
tion  of  data  organization  forms  can  reduce  the  use  of  hard-
ware  resources,  reduce  the  power  consumption  of  accelerat-
or, and reduce data exchange. Moreover, some effective tech-
niques such as approximate computing, pruning and compres-
sion can also improve performance and power consumption.

(4) Developing  more  versatile  and  modular  program-
ming framework. It  is  evident  that  programming framework
plays  an  important  role  in  the  development  of  NN  applica-
tions, which can help researchers develop conveniently and ef-

ficiently. In the future the programming framework should be
modular  that  the  application  developers  will  only  focus  on
neural network algorithms rather than the optimization meth-
od  and  hardware  architecture.  And  different  programming
frameworks  should  be  compatible  with  each  other  to  im-
prove programming efficiency.

(5) Hardware-oriented  automatic  optimization. The
compilation optimization is a crucial part to fully play the per-
formance of  NN accelerators.  Nowadays,  the  optimization for
hardware must be implemented by the hardware platform de-
velopers. In the future, there may be a general method to rep-
resent  the  characteristics  of  the  hardware.  With  this  method
the compiler will do hardware-oriented optimization automat-
ically,  which  will  significantly  alleviate  the  burden  on  hard-
ware developers.

With the development of NN algorithm, more NN operat-
ors need to be developed on the accelerator. In addition to op-
timizing  the  computation  and  memory  access  delay  in  hard-
ware,  the  friendliness  of  programming  and  the  efficiency  of
the  library  of  NN  accelerator  should  also  be  taken  into  ac-
count.  So,  the  developers  can  spend  less  energy  on  the  pro-
gramming  on  the  specific  accelerator  details  and  iterate
faster.  The automatic  compile  optimization of  NN accelerator
is  a  research  direction.  And  the  whole  programming  system
may  also  consider  of  a  heterogeneous  computing  platform
for the performance end-to-end.

5.  Conclusion

Nowadays, the NN accelerator has not only gained extens-
ive  attention  in  academic  research,  but  has  also  been  widely
deployed in  industrial  applications.  But  as  the applications of
AI  algorithms  are  becoming  ubiquitous,  the  NN  algorithm  is
also  evolving.  The  variability  of  application  scenarios,  the  di-
versity  of  algorithms  and  the  huge  amount  of  data  put  for-
ward  higher  requirements  for  NN  accelerators  and  their  pro-
gramming systems.

We  sketch  out  the  NN  algorithms  and  NN  accelerators.
With  the  accelerator  performance  getting  faster,  hardware  is
no longer the bottleneck in the AI application. Meanwhile, im-
plementing these  algorithms on different  software  and hard-
ware  platforms  and  implementing  them  efficiently  is  still  a
huge challenge. It leads to the necessity and importance of ac-
celeration as a whole entity. Then we review the latest develop-
ment  of  from  software  aspects,  including  the  implementa-
tion  methods  and  compile  optimization  of  the  existing  pro-
gramming  system  for  NN  accelerators.  We  also  comment  the
future  development  trend  of  NN  accelerator,  which  direction
must be the combination of software and hardware iteration,
stimulating development.
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